2,767 research outputs found

    Unwelcome And Unlawful: Sexual Harassment in the American Workplace

    Get PDF
    Nearly every American woman will, at some point during her working life, be sexually harassed, according to Raymond F. Gregory, a lawyer specializing in employment and discrimination law. This book provides information for those victims as well as for those suffering same sex harassment and for male victims of sexual harassment. Gregory analyzes sexual harassment from the perspective of existing federal law and describes the legal rights that may be asserted by victims of harassment to obtain either injunctive or monetary relief. By clarifying little understood aspects of the law barring sexual harassment, the author presents an indispensable resource for victims seeking to learn what to expect from the legal system if they contest the actions of their harassers in the courts

    z~2: An Epoch of Disk Assembly

    Full text link
    We explore the evolution of the internal gas kinematics of star-forming galaxies from the peak of cosmic star-formation at z∼2z\sim2 to today. Measurements of galaxy rotation velocity VrotV_{rot}, which quantify ordered motions, and gas velocity dispersion σg\sigma_g, which quantify disordered motions, are adopted from the DEEP2 and SIGMA surveys. This sample covers a continuous baseline in redshift from z=2.5z=2.5 to z=0.1z=0.1, spanning 10 Gyrs. At low redshift, nearly all sufficiently massive star-forming galaxies are rotationally supported (Vrot>σgV_{rot}>\sigma_g). By z=2z=2, the percentage of galaxies with rotational support has declined to 50%\% at low stellar mass (109−1010 M⊙10^{9}-10^{10}\,M_{\odot}) and 70%\% at high stellar mass (1010−1011M⊙10^{10}-10^{11}M_{\odot}). For Vrot > 3 σgV_{rot}\,>\,3\,\sigma_g, the percentage drops below 35%\% for all masses. From z = 2z\,=\,2 to now, galaxies exhibit remarkably smooth kinematic evolution on average. All galaxies tend towards rotational support with time, and it is reached earlier in higher mass systems. This is mostly due to an average decline in σg\sigma_g by a factor of 3 since a redshift of 2, which is independent of mass. Over the same time period, VrotV_{rot} increases by a factor of 1.5 for low mass systems, but does not evolve for high mass systems. These trends in VrotV_{rot} and σg\sigma_g with time are at a fixed stellar mass and should not be interpreted as evolutionary tracks for galaxy populations. When galaxy populations are linked in time with abundance matching, not only does σg\sigma_g decline with time as before, but VrotV_{rot} strongly increases with time for all galaxy masses. This enhances the evolution in Vrot/σgV_{rot}/\sigma_g. These results indicate that z = 2z\,=\,2 is a period of disk assembly, during which the strong rotational support present in today's massive disk galaxies is only just beginning to emerge.Comment: 12 pages, 8 figures, submitted to Ap

    Brainstem Auditory Evoked Potentials' Diagnostic Accuracy for Hearing Loss: Systematic Review and Meta-Analysis

    Get PDF
    Background: Microvascular decompression (MVD) utilizes brainstem auditory evoked potential (BAEP) intraoperative monitoring to reduce the risk of iatrogenic hearing loss. Studies report varying efficacy and hearing loss rates during MVD with intraoperative monitoring. Objectives: This study aims to perform a comprehensive review and study of diagnostic accuracy of BAEPs during MVD to predict hearing loss in studies published from January 1984 to December 2013. Methods: The PubMed/MEDLINE and World Science databases were searched. Studies performed MVD for trigeminal neuralgia, hemifacial spasm, glossopharyngeal neuralgia or geniculate neuralgia and monitored intraoperative BAEPs to prevent hearing loss. Retrospectively, BAEP parameters were compared with postoperative hearing. The diagnostic accuracy of significant change in BAEPs, which includes loss of response, was tested using summary receiver operative curve and diagnostic odds ratio (DOR). Results: A total of 13 studies were included in the analysis with a total of 2,540 cases. Loss of response pooled sensitivity, specificity, and DOR with 95% confidence interval being 74% (60–84%), 98% (88–100%), and 69.3 (18.2–263%), respectively. The similar significant change results were 88% (77–94%), 63% (40–81%), and 9.1 (3.9–21.6%). Conclusion: Patients with hearing loss after MVD are more likely to have shown loss of BAEP responses intraoperatively. Loss of responses has high specificity in evaluating hearing loss. Patients undergoing MVD should have BAEP monitoring to prevent hearing loss

    Beyond Spheroids and Discs: Classifications of CANDELS Galaxy Structure at 1.4 < z < 2 via Principal Component Analysis

    Get PDF
    Important but rare and subtle processes driving galaxy morphology and star-formation may be missed by traditional spiral, elliptical, irregular or S\'ersic bulge/disk classifications. To overcome this limitation, we use a principal component analysis of non-parametric morphological indicators (concentration, asymmetry, Gini coefficient, M20M_{20}, multi-mode, intensity and deviation) measured at rest-frame BB-band (corresponding to HST/WFC3 F125W at 1.4 1010M⊙10^{10} M_{\odot}) galaxy morphologies. Principal component analysis (PCA) quantifies the correlations between these morphological indicators and determines the relative importance of each. The first three principal components (PCs) capture ∼\sim75 per cent of the variance inherent to our sample. We interpret the first principal component (PC) as bulge strength, the second PC as dominated by concentration and the third PC as dominated by asymmetry. Both PC1 and PC2 correlate with the visual appearance of a central bulge and predict galaxy quiescence. PC1 is a better predictor of quenching than stellar mass, as as good as other structural indicators (S\'ersic-n or compactness). We divide the PCA results into groups using an agglomerative hierarchical clustering method. Unlike S\'ersic, this classification scheme separates compact galaxies from larger, smooth proto-elliptical systems, and star-forming disk-dominated clumpy galaxies from star-forming bulge-dominated asymmetric galaxies. Distinguishing between these galaxy structural types in a quantitative manner is an important step towards understanding the connections between morphology, galaxy assembly and star-formation.Comment: 31 pages, 24 figures, accepted for publication in MNRA

    Meiosis-specific gene discovery in plants: RNA-Seq applied to isolated Arabidopsis male meiocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Meiosis is a critical process in the reproduction and life cycle of flowering plants in which homologous chromosomes pair, synapse, recombine and segregate. Understanding meiosis will not only advance our knowledge of the mechanisms of genetic recombination, but also has substantial applications in crop improvement. Despite the tremendous progress in the past decade in other model organisms (e.g., <it>Saccharomyces cerevisiae </it>and <it>Drosophila melanogaster</it>), the global identification of meiotic genes in flowering plants has remained a challenge due to the lack of efficient methods to collect pure meiocytes for analyzing the temporal and spatial gene expression patterns during meiosis, and for the sensitive identification and quantitation of novel genes.</p> <p>Results</p> <p>A high-throughput approach to identify meiosis-specific genes by combining isolated meiocytes, RNA-Seq, bioinformatic and statistical analysis pipelines was developed. By analyzing the studied genes that have a meiosis function, a pipeline for identifying meiosis-specific genes has been defined. More than 1,000 genes that are specifically or preferentially expressed in meiocytes have been identified as candidate meiosis-specific genes. A group of 55 genes that have mitochondrial genome origins and a significant number of transposable element (TE) genes (1,036) were also found to have up-regulated expression levels in meiocytes.</p> <p>Conclusion</p> <p>These findings advance our understanding of meiotic genes, gene expression and regulation, especially the transcript profiles of MGI genes and TE genes, and provide a framework for functional analysis of genes in meiosis.</p

    A Search for Multi-Planet Systems Using the Hobby-Eberly Telescope

    Full text link
    Extrasolar multiple-planet systems provide valuable opportunities for testing theories of planet formation and evolution. The architectures of the known multiple-planet systems demonstrate a fascinating level of diversity, which motivates the search for additional examples of such systems in order to better constrain their formation and dynamical histories. Here we describe a comprehensive investigation of 22 planetary systems in an effort to answer three questions: 1) Are there additional planets? 2) Where could additional planets reside in stable orbits? and 3) What limits can these observations place on such objects? We find no evidence for additional bodies in any of these systems; indeed, these new data do not support three previously announced planets (HD 20367b: Udry et al. 2003, HD 74156d: Bean et al. 2008, and 47 UMa c: Fischer et al. 2002). The dynamical simulations show that nearly all of the 22 systems have large regions in which additional planets could exist in stable orbits. The detection-limit computations indicate that this study is sensitive to close-in Neptune-mass planets for most of the systems targeted. We conclude with a discussion on the implications of these non-detections.Comment: Accepted to ApJS. Includes 39 pages of radial-velocity data table
    • …
    corecore